Advanced Composite Coatings for Industries of the Future

Dr. Chuck Henager, Jr — PI

Dr. Yongsoon Shin, Dr. Bill Samuels; PNNL

Prof. Raj Bordia, Jessica Torrey; University of Washington

Prof. Lucille Giannuzzi, Dr. Steve Schwarz; University of Central Florida

Dr. Yigal Blum; SRI International

Partners

Dr. Eric Minford; Air Products and Chemicals, Inc.

Dr. Jeff Price; Solar Turbines

Dr. Walt Sherwood; Starfire Systems, Inc.

5-year Project 2001-2006, \$1.35M

SRI \$100K/yr, UW \$75K/yr, UCF \$50K/yr, PNNL \$175K/yr.

Project Summary

Goal

Develop low-cost coatings for prevention of high-temperature corrosion of metals and ceramics.

Challenge

- > Provide protection of high CTE metals and alloys at 700°C to 1000°C in oxidizing and reducing environments.
 - Specifically, prevent 316SS metal dusting in reformers.

Benefits

- ➤ Energy savings of 160 trillion Btu/year in 2010 assuming a 5% increase in efficiency.
 - Higher temperature operation and use of low-cost alloys.
 - Inexpensive and simple processing of coatings.

■ FY05 Activities:

- > Optimize coating formulation and coating strategy.
- > Improve coating sealing.
- ➤ Enhance understanding of coating and coating-substrate interactions.
- > Testing of coatings under realistic conditions.
- **Development of commercialization plans.**
- > Pursue possible patent applications.

Aluminide Coating

SiC Coating

Barrier-Pathway Approach

Barrier

> Lack of low-cost coating to prevent carburization of steels in steamreformer environments.

Pathway

- **Low-cost**, paintable, polymer-based coatings.
 - Corrosion resistant ceramic coatings.
 - Aluminide diffusion coatings.

Critical Metrics

- > Survive processing at 800-1000°C on high CTE steels.
 - Thermal cycling (10x) to 800°C.
 - 1000 h at operating conditions (temperature and environment).
- Benefits (based on 5% increase in efficiency)
 - > Energy savings of 160 trillion Btu/yr.
 - > Savings of 3.8 MMTCE.

Technical Approach

- Polysiloxane polymers convert to Si-O-C-N materials, which are ideal for low-cost protective coatings.
 - > A <u>very inexpensive</u> polymer precursor (PHMS) is being used (5-10 \$/kg) after switching from polysilsesquioxanes.
 - > PHMS chemistry is robust for organic attachments and curing reagents that can be used to control the final coating chemistry.
 - > Reactive and inert metal/ceramic fillers to accommodate differential shrinkage, constrained sintering stresses, and thermal expansion.
 - > Multilayer coatings for graded CTE and specific protection in a desired environment.
- Coating processing tailored for microstructure control.
 - > Ceramic coatings and diffusion aluminides have similar processing.
 - > Coating application is by painting: dipping, brushing, spraying.
- Coating characterization and testing.
 - > Microstructural and chemical.
 - **Mechanical Testing (Adhesion).**
 - > Thermal cycling.

Project Highlights and Accomplishments

- A novel, diffusion aluminide coating process has been developed at PNNL.
 - Does not require hot-dipping, pack cementation, or fluidized bed CVD.
- Two ceramic-filled coatings have been developed (SiC at PNNL and TiSi₂ at UW) that survive 10-cycles to 800°C on 316SS and 100 h at 800°C.
- A novel 316SS-flake coating has been developed at SRI to grade high-CTE metals to ceramic outer seal coatings.
- Further development of coatings containing small and large fractions of Al flakes (as reactive fillers) has been performed at PNNL and SRI.

PHMS Polymer Chemistry

Role of Fillers in Shrinkage Control

Filler reacts to form an expanded phase and compensate for polymer shrinkage

Filler reduces volume of polymer and associated shrinkage

Fillers

Design of Composite Coatings

Pre-Ceramic Polymer Matrix

- •Ease of processing (painting, spraying, dipping)
- Wetting and good bonding to surfaces
- •Low temperature conversion to ceramic
- •Protective final compositions

Powder Fillers

- •Control shrinkage during pyrolysis (prevent cracking and delamination)
- •Control of microstructure and mechanical properties
- •Control of thermal expansion mismatch to substrate
- Control of interface bonding
- •Improvement of hermeticity

Advanced Composite Coatings

- Al/Alumina powder mixtures
 - Approximately 40 to 60 v/o powder loadings (Al/Alumina equal ratio)
 - > Al-flake, 1-2 μm alumina powders.
 - > Alumina nanopowders.
- SiC powder
 - > 0.7 μm α-SiC powder at 40 to 60 v/o loading.
- TiSi, powder mixtures
 - \triangleright Alloyed powders attrition milled to < 5 μ m and 40 to 60 v/o loading.
- Stainless steel powder mixtures and multilayer coatings.
 - > 316SS flake, 30-50 μm, 40 to 60 v/o.

Simple Coating preparation

- Mix powders, polymer, solvents in roller-mill.
- > Dip, spray, paint on substrates.
- > Pyrolyze at 800°C to 1000°C in air, nitrogen, or argon.

Ease of Coating Application

Polymer/filler slurry can be applied like a paint in air at ambient conditions: Dipping, spraying, painting.

Spraying is performed in a hood using compressed air and thinned slurry. Thinning uses same solvent as is used to control viscosity for dipping but requires 2X solvent for spraying.

Summary of Coatings on Metals (316SS and 430SS)

- Al/Al₂O₃ coatings react to from FeAl regions on steels.
 - > Novel slurry-based diffusion aluminide coatings.
 - > Nodules and interwoven FeAl regions on 316SS.
 - > Extremely adherent and protective.
- SiC coatings adherent and continuous.
 - > "packed" powder appearance. (Hermeticity?)
 - > Survives repeated thermal cycling to 800°C.
- TiSi₂ coatings adherent and continuous.
 - > "packed" powder appearance. (Hermeticity?)
 - > Survives repeated thermal cycling to 800°C.
- Stainless steel flake coatings are adherent as underlayer.
 - > Provide CTE match to 316SS and graded underlayer.
 - > Adherent coatings to at least 1000°C in argon and up to 800°C in air.

SEM Image of Novel Diffusion Aluminide Coating (Al/Al₂O₃) on 316SS

Cross-section SEM of Diffusion Aluminide Coating on 316SS

AlFe Phase Diagram

Al diffusion into steel (typical phase sequence)

SEM Image of SiC-filled coating on 316SS

SEM Image of SiC-filled coating on 316SS

SiC coating (60 v/o) is thick, uniform, and adherent.

TiSi₂-filled Coating on 316SS

TiSi₂ particles in glassy matrix. Partially converted to oxide. —

20 μm thick coating. good adherence to metal. Appears dense.

316SS-filled Coatings on 316SS

Two-layer Coatings on 316SS

Second layer: 316SS flake – 25 v/o Al flake – 15 v/o; 1000°C in Argon

First layer: 316SS flake – 40 v/o; 1000°C in Argon

Cyclic and Static Oxidation Testing: SiC Coating

Cyclic and Static Oxidation Testing: TiSi₂ Coating

5 Cycles, 800°C, Air

TiSi₂-filled Coating. Limited oxidation.

Limited oxidation under coating.

May require additional barrier

(non-hermetic)

Future Plans for FY05

- Work with industrial partner to insure that coatings are tested and evaluated properly.
 - > Complete oxidation and cyclic exposure testing (started).
 - > Develop method to test coatings in Steam Methane Reformer (SMR) environment (simulated).
- Develop method to seal porous or compliant powder coatings for hermeticity.
 - > Explore PHMS seal coat for SiC-coating.
- Develop topcoat layer for 316SS-powder coating underlayer.
- Measure coating and interfacial mechanical properties.
- Commercial implementation path.

Commercial Implementation Versatile Robust Coatings at Low Cost

Implementation Plans

Carburization Resistance Coating Market

- Hydrogen economy
 - > 80% of H₂ volume produced by SMR (Syngas)
 - ➤ AIR PRODUCTS alone 35 SMR plants
 - Coal and Biomass gasification plants
 - 160 plants worldwide in 2000
 - Production equivalent to 770,000 oil barrels per day
 - \searrow Major uses of Syngas (H₂/CO) in production of
 - Ammonia
 - Methanol
 - Oxo-alcohols (for detergents)
 - Fischer Tropsch (Syngas to hydrocarbons)

Growing volume

Implementation Plans

Carburization Resistance Coating Market (cont)

- Petrochemical Industry
 - Ethane/propane to Ethylene cracking (pyrolysis)
 - ➤ Gas-to-Liquid (GTL) e.g., **Syntroleum**
 - Hydrocracking and hydrotreating plants (also H₂ consumers)
 - \triangleright Heavy oil to light fuel (growing trend-consuming H_2)
- Coal and gas based electrical power generation
- Other Applications
 - Many other high-temperature corrosion resistance applications for steel and stainless steel industrial applications
 - Heat exchangers, engines, pipes, construction materials

Implementation Plans Marketing plans

- Discuss plant maintenance and infrastructure management with
 - > SMR, gasification, Syngas users, and hydrocracking companies
- Identify the main attributors for plant design and maintenance
 - > Plant design construction companies, maintenance service providers, materials producers, Plant fabricators, paint companies, coating service providers ???

Who is in charge?

Discuss scenarios for coating technology development with main attributors

Plan scale-up and implementation with main attributors

Summary

- Preceramic polymer (PHMS) + fillers make <u>very</u> <u>inexpensive</u> composite coatings with wide range of control over processing and characteristics.
 - > Versatile chemistry for processing, composition, microstructure, and property tailoring.
 - > Reactive fillers can
 - Expand compensating the polymer shrinkage.
 - Undergo "displacement" reactions with the pyrolyzed polymer.
 - Interact with steel forming protective alloy layers (aluminides).
- Easy air-stable handling and processing (like paint)
- Simple paint, spray or dip coating techniques
- Excellent wetting and adherence to metals
- Simple pyrolysis cycle in air, argon or nitrogen
- Multiple and graded coatings are feasible.

Summary (cont)

- Broad range of ceramic and metal-ceramic composite coatings with significant density
 - > Coatings with excellent integrity obtained with SiC- and TiSi₂-filled coatings.
 - Preliminary evaluation shows good response to thermal cycling.
- Diffusion-reaction coatings are feasible with Al as a filler.
 - > Forming Iron Aluminide
- Carburization resistance coatings are of high need for major energy producing and energy saving industries.
- Other high-temperature protective coatings are also envisioned.

Acknowledgements

DOE/Industrial Technology Program

- Dr. Sara Dillich
- Dr. Charles Sorrell

Industrial Partners

- Dr. Eric Minford; Air Products and Chemicals, Inc.
- Dr. Jeff Price; Solar Turbines
- Dr. Walt Sherwood; Starfire Systems, Inc.